
MATHEMATICS OF COMPUTATION 
VOLUME 50, NUMBER 182 
APRIL 1988, PAGES 481-499 

Error Bounds for Linear Recurrence Relations* 

By F. W. J. Olver 

Abstract. Recurrence relations of the form 

arpr+1 = brpr + CrPr-1 

are examined in two cases: (A) oscillatory systems, for which b2 + 4arCr < 0; (B) 
monotonic systems, for which b2 + 4arCr > O. In both cases, a posteriori methods are 
supplied for constructing strict and realistic error bounds in 0(r) arithmetic operations. 
A priori bounds, also requiring 0(r) arithmetic operations, are supplied in Case B. 
Several illustrative numerical examples are included. 

1. Introduction. The application of mth order linear recurrence relations 

(1.1) aroPr + ariPr-1 + ar2Pr-2 + + armPr-m + dr = 0, 

in which aro :A 0, all r, to generate a sequence of values Pm, Pm+ 1,... from pre- 
scribed values of Po, P1 i ... X Pm- 1 is a well-understood procedure in numerical anal- 
ysis. See, for example, [1], [2], [3], [4] and, most recently, the monograph of Wimp 
[19]. If the corresponding homogeneous equation is regarded as a difference equa- 
tion, then it has m linearly independent solutions the so-called complementary 
functions of (1.1). Each rounding error introduced in the recurrence process con- 
taminates the wanted solution of (1.1) by small multiples of the complementary 
functions. This is of no concern if the wanted solution grows in size at least as 
fast as any of the complementary functions, that is, if it is a dominant solution. In 
other cases the process may fail, indeed fail disastrously, and in order to achieve 
stability it is necessary to apply the recurrence relation in a backward direction, or 
to solve a boundary value problem. 

Perhaps because stability conditions are so well understood, comparatively little 
attention has been paid to the problem of constructing strict error bounds for 
the computed results. These bounds are to cover the effects of rounding errors 
introduced during the recurrence steps as well as inherent errors in the coefficients 
arj and dr and the initial values p0, Pi.j.. , Pm-i. This is the problem treated in 
the present investigation. One obvious application is to the development of robust 
software for the generation of transcendental mathematical functions by recurrence. 

The only relevant published work appears to be that for Miller's algorithm; see 
[7], [9], [16]. In fact, some results for the present problem could be found simply 
by specializing results given in these references, especially [7]. This approach leads 
to unnecessary complications, however, and a more direct attack is called for. 
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We first observe that the evaluation of Pr for the range r = m, m+1, . . , m+n-1, 
say, is equivalent to the solution of a system of n linear algebraic equations. Hence 

the required error bounds can be found by available algorithms in matrix algebra; 

see, for example, [13], [14]. A drawback to this approach is that it requires the 

inversion of a lower triangular band matrix. The number of arithmetic operations 

needed for the inversion is 0(n2), for large n, compared with only 0(n) operations 

for the computation of the solution Pr It can be argued that it suffices to have the 

norm of the inverse matrix. However, it is an upper bound for the norm that is 

really needed, and this is tantamount to the original problem.1 

Another drawback to the matrix approach is that it usually fails to provide 

insight into the nature of the error bounds; in particular, it will not yield realistic 

bounds of a priori type unless, of course, bounds for the elements or norm of the 

inverse matrix are known. 

A second general approach is to apply rounded interval arithmetic [8, Section 

2.4]. Often this procedure is quite successful. In many cases, however, the computed 

intervals are absurdly unrealistic. We illustrate this observation by two simple 

examples. 
Example 1.1. 

(1.2) 12Pr+1 = 25Pr - 13Pr-1; P0 = 1, Pi = 13/12. 

Computed interval values of P2, P3, ... ,P16 are given in Table 1.1. For example, 

the entries for r = 2 mean that 

1.17360 < P2 < 1.17363. 

Six-figure decimal arithmetic was employed, with directed rounding2 applied im- 

mediately following each arithmetic operation at each recurrence step. 

Clearly the interval widths grow rapidly as r increases. After r = 12 the left 

endpoint begins to decrease and actually becomes negative at r = 16, even though 

the true solution Pr = (13/12)r is positive, increasing and dominant. 

Example 1.2. 

(1.3) 3Pr+1 - VPr + 2pr -1 - 1 = 0; Po =Pi = 1. 

An interval solution was computed in the same manner as Example 1.1, and the 

results are presented in Table 1.2. Again the interval widths grow rapidly with 

r, even though the wanted solution is dominant and tends to the constant value 

3.23013... as r -* x0. The actual solution is given by 

P = 1 (5 + V+/) - 2r/23-(r+2)/2{(2 + A) cosrw + (V - I) sinr}, 

with w = tan-1(1/V'iii). 

'Compare [5]. Here algorithms are supplied for computing the norm of the inverse of a tridi- 

agonal matrix of order n in O(n) operations. The algorithms entail the application of three-term 

homogeneous recurrence relations. 
2That is, towards -oo for left endpoints and towards +oo for right endpoints. 
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TABLE 1.1 TABLE 1.2 
Interval solution of (1.2) Interval solution of (1.3) 

r Pr , TPr+l/.TPr r - Pr - TPr+l/IPr 
0 1 1 - 0 1 1 - 
1 1.08333 1.08334 3.0 1 1 1 - 
2 1.17360 1.17363 3.333... 2 1.23013 1.23014 3.0 
3 1.27137 1.27147 2.5 3 1.58993 1.58996 2.333... 
4 1.37725 1.37750 2.6 4 1.99904 1.99911 2.142... 
5 1.49183 1.49248 2.523 ... 5 2.39879 2.39894 2.133... 
6 1.61568 1.61732 2.524 ... 6 2.75102 2.75134 2.0 
7 1.74914 1.75328 2.514 ... 7 3.03517 3.03581 2.015... 
8 1.89194 1.90235 2.515 ... 8 3.24447 3.24576 1.968... 
9 2.04215 2.06834 2.514... 9 3.38203 3.38457 1.933... 

10 2.19359 2.25945 2.514... 10 3.45716 3.46207 1.930... 
11 2.32926 2.49487 2.514... 11 3.48206 3.49154 1.916... 
12 2.40488 2.82127 2.514... 12 3.46933 3.48750 1.915... 
13 2.30738 3.35430 2.514... 133 3.42980 3.46460 1.913... 
14 1.75065 4.38285 2.514... 14 3.37070 3.43730 1.912... 
15 0.0133583 6.63135 2.514... 15 3.29356 3.42094 1.912... 
16 -4.72027 11.9189 16 3.19116 3.43477 

The explanation of the failure of interval arithmetic in these examples is the usual 
one: the process takes no account of the interdependence of errors at successive 
steps. In fact, in Example 1.1 the interval widths 'Pr, say, eventually grow in 
proportion to ar, where a = 2.514... is the largest zero of the polynomial 12z2 - 
25z - 13. This is confirmed by the numerical values of the ratio Tpr+l/Ipr given 
in the final column of Table 1.1. Similarly in Example 1.2 the interval widths 
eventually grow in proportion to ar, where a = 1.912... is the largest zero of 
3z2 - Lfiz - 2. 

To construct methods that entail no more than 0(r) arithmetic operations and 
yield realistic error bounds, we have to impose restrictions on the nature of the 
recurrence relation. Without such restrictions, we have only the general matrix 
approach, with its 0(r2) operations, to fall back on for realistic bounds. The 
present paper treats only real second-order relations. We also restrict ourselves 
to homogeneous systems, mainly because inhomogeneous problems often require 
error bounds for the associated complementary functions as a necessary preliminary 
[1], [10], [19]. In some cases, however, our methods carry over straightforwardly 
to inhomogeneous systems. Admittedly, the problems that fall within our scope 
amount to only a small subclass of the general problem of solving linear difference 
equations; nevertheless, this subclass includes many important recurrence relations 
satisfied by the higher transcendental functions. 

We standardize (1.1) for homogeneous second-order systems in the form 

(1.4) arPr+1 = brPr + CrPr-1, 

with po and p, prescribed and ar :A 0, all r. We distinguish two cases: oscillatory 
systems in which b2 + 4arCr is negative for all r, and monotonic systems in which 
b2 + 4arCr is nonnegative for all r. This classification is suggested, of course, by the 
nature of the solutions when the ar, br and Cr are constants. Oscillatory systems 
are treated in Section 2, and monotonic systems in Sections 3, 4 and 5. In both 
cases we provide methods for constructing error bounds of a posteriori type. For 
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monotonic systems we also furnish a priori bounds. Some numerical examples are 
supplied in Section 6, and brief conclusions are drawn in Section 7. 

2. Oscillatory Systems. In (1.4) we replace cr by -cr for convenience. The 
oscillatory case is then given by 

(2.1) arPr+1 = brPr - CrPr-1, 

with b 2 < 4arcr, all r. Without loss of generality we may suppose that ar and Cr 
are positive. 

Example 1.2 is typical for systems of this kind in that interval arithmetic will 
generally yield unsatisfactory results. The error bounds, or interval widths, even- 
tually grow at the same rate as the dominant solution of the equation 

arPr+1 = IbrIPr + CrPr-1i 

That this solution grows faster than the solutions of (2.1) can be inferred from the 
case in which the coefficients are constants. 

In order to proceed, let qr be a solution of (2.1) that is independent of Pr and 
(like Pr) is computed by forward recurrence from given values at r = 0 and 1. 
Denote the stored values of Pr, qr and other quantities by the addition of overbars. 
Also, let Or and ?Or be the aggregate errors introduced on the (r - 1)st step in the 
computation of Pr and qr, as expressed by the formulae 

(2.2) ar- iOr = br- 1Pr- 1-Cr- 1Pr-2 + Or ar-iqr = br-i1qr-1 -Cr-1qr-2+/)rO 

Thus Or includes the effects of all abbreviation errors3 introduced in the computa- 
tion of Pr from fr-i and Pr-2 as well as the effects of inherent errors in the given 
values of the coefficients ar-1, br-i and Cr-1i Similarly for kr. 

Bounds for kbrI and NMrI can be computed by standard methods of round-off 
error analysis, see for example [12], [18], or by interval arithmetic. For the initial 
values we set 

(2.3) fio=po+ko, pi=pi1+ , qo=qo+io, V i=qi+' 1 
The relationship of the stored values Pr and qr to the true values Pr and qr is 

easily verified to be 

(2.4) Prr=Pr+BrPr-Arqr, qr=qr+DrPr-Crqr, 

where 

r r 

(2.5) Ar =-w1pi0bo ? Z WjPj-10j, Br =-wjqiq0o + E wjqji1j , 
j=i j=i 
r r 

(2.6) Cr =-WiPi)O + E WjPj-i1/)j, Dr =-wlqi/o + E wjq, V)j, 
j=i j=i 

and 

(2.7) W1 = 1 Wr = r > 2. 
Pqo - Poql 

= 
ar-l(Prqr-1 --Pr-lqr) 

3By "abbreviation errors" we mean chopping or rounding errors. 
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The wr are finite since Pr and q, are assumed to be independent solutions. We also 
have the recurrence relation 

(2.8) Wr = (ar-2/cri1)wril, r > 3, 

and w2 = wi/ci. Let us denote the wanted errors by 

(2.9) r =PrPr, t7r=qr-qr- 

Suppose that we have computed P-r and q-, together with bounds on JPjJ, JqjJ, 
JEjJ1 JqjJ, JAj1, JBjJ, JCjJ, JDjJ and JwjJ, for all j < r - 1. We first compute bounds 
on JOrl Jk)rJ and JwrJ; compare (2.2) and (2.8). Next, from (2.5) and (2.6) we have 

(2.10) Ar = Ar-1 + WrPr-1ir, Br = Br-1 + Wrqr-10r, 

(2.11) Cr = Cr-1 + WrPr-1ir, Dr = Dr-1 + Wrqr_1/)r, 

provided that r > 1. Using these relations we compute bounds on |Arl, JBrJ, Cr 
and JDrJ. Then by substituting the results obtained so far into the identities 

(2.12) ErEr = {Br(1 - Cr) + ArDr}Pr + Arqr, 

(2.13) Er?7r = -DrPr + {(1 + Br)Cr - ArDr}qr, 

in which 

(2.14) Er = (1 + Br)(1 - Cr) + ArDr, 

we arrive at bounds for Er I and rir I (These identities are obtained by solving Eqs. 
(2.4) for Pr and qr, and using (2.9).) Bounds for Pr and qr follow from (2.9), and 
after computing Pr+i and qr+1 from (2.1) we are ready to repeat the cycle. 

This is our method for constructing a posteriori error bounds. The magnitudes of 
the solutions Pr and qr may rise or fall as r increases, depending on whether Cr ' ar. 
However, provided that the rate of growth of the magnitudes of the solutions does 
not differ significantly from that of (Cr/ar)1/2, all terms in the sums in (2.5) and 
(2.6) will remain of comparable magnitude, owing to the presence of the factors 
wj. That this growth condition is not unreasonable can be seen by analogy with 
the case in which the difference equation has constant coefficients. Nevertheless, 
the condition will not always be satisfied in the general case, and it may need to 
be examined by asymptotic analysis or other independent means. 

When the growth condition just discussed is satisfied, the bounds for IArT, IBr , 
JCrJ and JDr1 may be expected to grow approximately linearly with r, which is an 
essential requirement for the bounds for lErl and I'qrl to be realistic. The number 
of arithmetic operations needed is several times that required to compute the Pr, 
of course, but is still only 0(r) for large r. Moreover, many of these computations 
could be performed in parallel: if this is arranged, then the total execution time 
will not greatly exceed that needed for the computation of the P-r alone. Lastly, the 
method can be extended easily to inhomogeneous oscillatory systems, as long as the 
wanted solution is not dominated by the complementary functions as r increases. 

3. Monotonic Systems (i). We now consider Eq. (1.4), that is, 

(3.1) arPr+1 = brPr + CrPr-i1 
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with the condition b' + 4arcr > 0, all r. We may suppose that ar > 0, and we shall 
also suppose that br > 0.4 In the present section we require Cr > 0, deferring the 
more difficult case of negative Cr until Sections 4 and 5. 

The essential behavior in this case is that for appropriately chosen solutions the 
relative errors are simply additive. To express this result precisely and conveniently, 
we use relative precision (rp) in place of relative error, that is, we work in terms of 
the absolute errors of the logarithms of approximations [12]. 

We assume that the stored values ar, br and c-r of ar, br and Cr, respectively, 
are correct to rp(6), say, and the computations are performed in floating-point 
arithmetic with a working relative precision (wrp) of -y. (In other words, each 
arithmetic operation is accompanied by a chopping or rounding error not exceeding 
rp(-y).) We also assume that the initial values satisfy 

(3.2) Po - po; rp(w), Pi iii; rp(w), 

where Po and p1 are nonnegative, and w, like 6 and -y, is given. (Without these 
assumptions, Pr might be recessive as r -* ox.) By application of the rules of rp 
error analysis and a simple inductive argument we deduce that 

(3.3) Pr ' Pr; rp{w + (2r - 2)6 + (3r - 3)>y}, r > 1. 

This is the required result. Often it is improvable in minor ways. For example, if 
ar = 1, all r, then the coefficients of 6 and -y can be reduced to r - 1 and 2r - 2, 
respectively. 

It should also be noted that if interval arithmetic is applied directly to (3.1), 
then it will yield realistic a posteriori bounds. However, in view of the simplicity 
and effectiveness of the a priori bounds just given, the extra computations entailed 
by use of interval arithmetic can be avoided. 

4. Monotonic Systems (ii). In this and the next section we consider the 
equation 

(4.1) arPr+1 = brpr - CrPr-1, 

in which b 2 > 4arcr, ar > 0, br > 0 and Cr > 0, for all r. We seek a solution Pr 
such that Pr > 0, for all r. 

For reasons similar to those given in the oscillatory case (Section 2), interval 
arithmetic applied directly to (4.1) will yield unsatisfactory results. The method 
of Section 2 also fails. If Pr is dominant and qr is recessive as r -* 00, then in the 
second of (2.4) the term DrPr soon overwhelms qr. If Pr and qr are both dominant, 
then the situation is even worse. 

One way to proceed is to transform (4.1) into the nonlinear equation 

(4.2) arhr+l = br - (Cr/hr) 

satisfied by the ratio hr = Pr/Pr-1. Then interval arithmetic, or a running error 
analysis [12], [18], can be applied to the computation of the sequence {hr} by 
recurrence, and also to the subsequent recovery of the wanted solution from the 
product 

(4.3) Pr = hrhr-i * hipo. 

4 Systems in which ar and br have opposite signs for all r are accommodated by replacing Pr 
by (-l)rpr. 
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The reason these procedures are now more successful is that they make appropriate 
allowance for interactions of errors. In contrast, when (4.1) is computed in interval 
form, the upper (say) endpoint of Pr+i depends on the upper endpoint of Pr and 
the lower endpoint of Pr-i 

Another approach is to replace (4.1) by a pair of first-order linear equations with 
nonnegative coefficients; compare Section 3. For example, we can introduce a new 
variable Ur defined by 

Ur = Pr+1 - ArPrX 

where Ar is a positive function of r at our disposal, subject to the condition Ur > 0. 
Then (4.1) is equivalent to 

(4.4) arur = VrPr + ?r-iur-i, Pr+1 = ArPr + Uri 

where 

(4.5) 1r-i = Cr/Ar-li Vr = br - arAr - Yr-i. 

By hypothesis, Ar-1 > 0, hence i-tr-1 is finite and nonnegative. The remaining 
coefficient Vr is nonnegative as long as Ar and Ar-i also satisfy 

(4.6) arAr-1Ar - brAr-1 + Cr <0 

If the coefficients ar, br and Cr are slowly-varying functions of r such that b' > 

4arcr and the starting values Po, Pi are chosen appropriately, then it will usually 
be possible to satisfy (4.6). This is because the zeros of the local characteristic 
polynomial arz2 - brZ + Cr are real and distinct, and in effect (4.6) requires Ar-i 
and Ar to lie between them. For example, we might choose Ar to be the arithmetic 
mean of the zeros, given by 

Ar = br/(2ar). 

Then (4.6) is satisfied as long as 

br-lbr > 4ar-icr, all r. 

Solutions of (4.4) may be generated by interval arithmetic or with a running 
error analysis. Considerable cancellation may occur in the computation of vr from 
the second of (4.5); in consequence, it may be necessary to employ higher precision 
on this step. 

In the next section we describe a semianalytical method. This method provides 
greater insight into the actual error propagation, and leads to useful a priori bounds. 
It has some features in common with the valuable method used by Mattheij and 
van der Sluis for obtaining error bounds for Miller's algorithm [7]. 

5. Monotonic Systems (iii). As in Section 4 we consider the equation 

(5.1) arPr+1 = brPr - CrPr-i, 

but with the conditions on the coefficients modified to b 2 > 4arcr, ar > O br > 0 
and Cr > 0, for all r. Again, we wish to compute a solution Pr that is dominant as 
r -* ox. We suppose that Pr is positive when r > 0 and nonnegative when r = 0. 
To begin with, we denote by qr any positive solution that is independent of Pr. 
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As in earlier sections, we use overbars to indicate stored values. We first investi- 
gate the actual propagation of the aggregate abbreviation error Oj, say, introduced 
on the (j1- 1)st application of (5.1) according to the formula 

(5.2) a piPj = bj-l cy5j2 + v j > 2; 

compare (2.2). The solution p, , say, of (5.1) that satisfies 

p~l=0, (?) = qj/ajpi, > 2, 

is expressible in the form 

Ur) = 1_pj-lqr )tjoj (5.3) PrJ) = (i- ~z;) ~qj-lPr ajlp Pr, 

where 

(5.4) t (1 pj-lqj)lj >l 

With the assumed conditions, tj is always finite. 
Now suppose that qr is the recessive solution of (5.1), so that qr/Pr 0 as 

r -x oc. Although qr is unique only up to a constant factor, obviously from (5.4) 
the coefficients tj in (5.3) do not depend on this factor. Furthermore, from (5.3) 
we have 

(5.5) t), kj r-x , j fixed. 
Pr aj-lpj 

This means that the relative error /j/(ajilpj) introduced on the (J - 1)st appli- 

cation of (5.1) is magnified ultimately by the factor tj. If it happens that qr/Pr is 

decreasing for all r, then we have, in addition, 

U) I~~~j 
(5.6) _____ 

< > 
Pr aj- iPj 

In other words, the actual propagated error is bounded by its limiting form. It also 

has the same sign. 
For our purposes, it is not essential for qr to be the recessive solution. Suppose 

that we are computing Pr over the range r = 2,3, ... , n, where n is arbitrary. Let 

qr now denote any solution of (5.1) that is positive when 0 < r < n-1, nonnegative 
when r = n and also has the property that qr/Pr is decreasing for 0 < r < n. Then 

qr is independent of Pr; furthermore, if tj is defined by (5.4) in terms of the present 
qr, then (5.6) applies for j = 2, 3,... ., n. 

To investigate the effect of inherent errors in the starting values at r = 0 and 1, 

let 

(5.7) po = po-o, pi = Pi1-q , 

as in (2.3). Then the solution Pr?), say, of (5.1) that satisfies 

(5.8) p(?) =-vo, p() = 

is given by 

( ) Pr ~~() = p(1 qr) ???p _(_p0qr) t101 (5.9) Pr -9 Pr I Pri 
qiPr PO qoPr Pi 
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where t1 is defined as in (5.4) and 

(5.10) t =(qoPl 1) 

With the assumed conditions we have 

(5.11) _Pr I< tolo | t1 I r > 1. 
Pr Po P1 

On combining the effects of all the errors vo , ,. . ., Or we arrive at 

(5.12) < to + t? 1 + E t_ _ X 2 < r < n. 
Pr PO Pi j=2 ajilpj 

In the relations (5.9) to (5.12) we have supposed that P0 :A 0. If Po = 0, then 
we suppose that Po = 0. The inequalities (5.11) and (5.12) then apply without the 
term tolkol/po on their right-hand sides.5 

In order to proceed, we need bounds on the coefficients tj defined by (5.4) and 
(5.10). In turn, this necessitates bounds on pj-l/pj and qj/qji,. Results of this 
kind have been supplied by the present writer [11], Mattheij [6] and van der Sluis 
[15]. For present purposes a simple and convenient result is provided by the follow- 
ing theorem. This result is included in that given by Theorem 4.1 of [6], but for 
simplicity we give a proof using our present notation. 

THEOREM 5. 1. Let ar and /3r denote the (positive) zeros of the quadratic arz2 
- brz + cr, chosen so that aer > /3r. Write 

(5.13) 
?e = Min(oel, Ce2 X . . . Xen-1),A max(cel, Ce2 X * n- 1 ) 

B = nlaX(01, 02, ., .n . 1ia), 

and assume that a > B. Also, let Vr be any solution of (5.1) that is nonnegative 
when r = 0 and satisfies vi/vo > B. Then 

(5.14) _ <Vr/vr-1 < A, r = 1,2,...,n, 

where 

(5.15) O = min(al, vi/vo), A = max(A, v1/vo). 

(In the case v0 = 0 the condition vi/vo > B becomes vl > 0, O = O and 
A = x.) 

To prove the theorem, write 

fr (Z) = r--- 
ar arz 

so that 

Vr+1/Vr = fr(vr/Vr-1). 

We observe that for fixed r, fr (z) is increasing when z > 0 and 

fr(Z) < Z, if z >? Cr; fr(Z) > Z, if ,3r < Z <6 Cr 

5 An appropriate modification could be made, however, if po = 0 but po $ 0. 
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From these results and the identity fr (ar) = axr it follows that: 

(a) if cr < vr/Vr-iX then cer < vr+i/Vr < Vr/Vr-1; 
(b) if /3r < Vr/Vr-i < Cerx, then Vr/Vr-i < Vr+i/Vr < Cer- 

The result (5.14) is now proved by induction. Suppose that Vr/Vr-1 > B and 
< Vr/vril < A, as is certainly the case when r = 1. Then Vr/Vri1 > /3r. Hence 

(a) or (b) applies. In either event we have Vr+i/Vr > B and & < Vr+i/Vr <A. El 
Let us return to the bound (5.12). Defining Oa and B by (5.13) and applying 

Theorem 5.1, we find that 

(5.16) Pr-i/Pr < l/p, r = 1,2,... n, 

where 

(5.17) p = min(Ce,pi/Po), 

provided that ax > B and P1/Po > B. To arrive at a similar bound for qr/qr-i, we 
now define qr to be the solution of (5.1) that satisfies 

qn- 1 = 1, qn = O. 

This solution can be generated by backward recurrence: 

Crqr-1 = brqr -arqr+l X r = n -1,n n- 2 ..., 11. 

By applying Theorem 5.1 to this form of the difference equation, we deduce that 

(5.18) qr/qr-1 < B, r = 1, 2, ..., n. 

If we now restrict ax > B and P1/Po > B, then p > B, implying that qr/Pr is 

decreasing for r = 0,1, .. ., n. Accordingly, we may substitute in (5.4) and (5.10) 

by means of (5.16) and (5.18). This yields the required bounds in the form 

(5.19) to < B 3 << B i<j < n. 

It is now easy to see how to compute a posteriori bounds for 1Pr - Pr I successively 

for r=2,13,. . ., n. Write 

(5.20) Tr = to k|+ tk + E t3 r > 1, 

with the understanding that the term to Io I/Po is omitted in the case Po = Po = 0 

and the empty sum is zero in the case r = 1. From (5.12) we derive 

Pr-rr = rTr-iPr + Ortr | rK 2 < r < n, 
ar-1 

where 'r is some number in the interval [-1,1]. Solving for Pr we deduce that 

(5.21) 1Pr -PrI < a Tr-iPr + tr i J0r 
1- lTr-1 a~~PrFr1 

provided that Tri < 1. As in Section 2 write Er = Pr - Pr, and suppose that we 

have arrived at a lower bound for Pr-, and upper bounds for |Er-1i and ITr,11, 

with r > 2. Inequalities (5.19) and (5.21) immediately yield an upper bound for 

lErl. A lower bound for Pr can then be obtained, for example, from the inequality 

(5.22) Pr > Pr - lErl 
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(as long as lEr < Pr). And since 

(5.23) Tr= Tr i+ trT|Or_ r > 2 
ar-l Pr 

we can also find an upper bound for Tr. The cycle is now ready to be repeated. 
A more interesting problem is to extend the foregoing analysis to yield a priori 

bounds. As in Section 3, we suppose that the stored values of the coefficients dr, 
br and c-r are correct to rp(6), the initial values Pb and P- are correct to rp(cu) and 
the computations are carried out in floating-point arithmetic with wrp(-y). 

THEOREM 5.2. Let Pr and qr be solutions of (5.1) such that po > 0, Pr > 0 when 
r > 0, qr > 0 when 0 < r < n - 1, q7n > 0, and qr/Pr is decreasing for 0 < r < n. 
Assume also the conditions of the preceding paragraph, and let oo = w1 = w and 

2 [(to + tl)>0 

(5.24) 1 

j=2 aj-1 Pj aj-1 P 

r > 2, with t3 defined by (5.4) and (5.10).6 Then 

(5.25) Pr , Pr; rp(r) 

provided that Vor < A, where ' = 0.265... is the positive root of the equation 

Ize 3z/2\ 
(5.26) -In (1-2 zez/2) =Z 

Proof. We first need an upper bound for the error term q5j in (5.2). Since each 
arithmetic operation is accompanied by an abbreviation error of rp(Qy), we apply 
the rules of rp error analysis [12] to obtain 

I0jI < {aj-1Pj(8 + 2-Y) + (b 1-p-1 + Cj-1P- -2)(6 + -)}ee+2L, ; > 2. 

Next, on comparing (5.7) with the given conditions we have 

Ik)oI < pooe' lo, I < ploe'. 

Substituting in (5.12) by means of these inequalities, we derive 

Pr PrI~~~~~~~ 
1Pr - rIP 

[r L j=2 Pj 
(5.27) 

+ Pj-i + c~1PJ-2 16+ e+- 
+ aj1 pj aj-1 pj ) ( 

] 

where 

(5.28) 8 = max(cu, 6). 

We shall establish (5.25) by induction. Suppose that 

(5.29) Pj c p-j; rp(uj), j = 0 1, ... , r -1, 

6 Again, when po = po= 0 we set to = 0. 
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as is certainly the case when r = 1 and 2. If we extract the term tr(Pr/pr)(6 + 2'y) 
from within the square brackets of the right member of (5.27) and express it in the 
form 

tr 
Pr 

-1) (6 + 2,y) + tr (6 + 2,y), 

then with the aid of (5.29) and the fact that each of oo, l,...,. or-, is bounded 
by or,7 we see that 

Pr-PI +P Pr '6+2- 
< itr(6 + 2-v) + -orer } e 

Pr ~ rPr 2r 

Next, from (5.24), (5.28) and the inequalities t1 > 1, t2 > 1 it is easily seen that 
tr(6 + 2,y) and 8 + 2,y are both bounded by ',or when r > 2. It follows that 

Pr -PrI < 1' Pr Pr ewr/2 + 1ore3wr/2X 
Pr 2 Pr 2 

and hence that 

1 (1 
IPr F)<_l 1 2 -w zewr/2 )- 

the last step being a consequence of the assumption or < ; compare (5.26). Thus 
(5.29) holds when j = r. El 

For the purpose of constructing a priori bounds, Theorem 5.2 possesses the 
essential feature that the error bound for Pr is expressed in terms of the true 
solution Pr rather than the computed solution Pr. With the notation of Theorem 
5.1, and the assumptions Ol > B, Pi/Po > B, the conditions of Theorem 5.2 on the 
solution qr are satisfied, and we may apply (5.16) and (5.19). From (5.1) we have 

bjlp3_ 1 + Cj-lPj-21 

aj-Pj aj_1P3 

accordingly, (5.24) may be simplified into 

(5.30) wr =2 [(to + ti)wO + Et {26 + 3 + cj_1 Pj-2 (26 + 2}) 

Then by making the indicated substitutions we arrive at 

'or < p- (B 
+ 

p)wO + p E 26 + 3,Y + cj- 2 (26 + 2,a)}| p_-_ Cj-1 (2 +2 ' 

If we now introduce the quantity 

C = max (c3 /aj), 
jE7 [nd - 1 

7~ This follows from the definition (5.24) and the inequality ti > 1. 
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then we are led to the further simplification 

(5.31) 'or < - [(B + p)u + (r-1) {(26 + 3-)p + 2C ( +) 

Remarks. (a) The coefficient 2 outside the square brackets in the definition (5.24) 
of or is arbitrary, to some extent. In fact any constant in excess of unity could be 
used instead, provided that an appropriate change is made in the definition of I. 

(b) By referring to the analysis in this section leading up to (5.12), it is easy to 
relate the terms on the right-hand side of (5.24) to the various errors introduced 
during the computations. Thus, the terms (to +t1)w are contributed by the inherent 
errors in p- and -1. In Er= the terms tj(8 + 2av) stem from the inherent error 
in a-j- and the two errors introduced on abbreviating the difference bj-lp-1 - 

CjplPj-2 and the quotient b3lpj11 - Cj31P-21/ajf1. The remaining terms in 
Ej= 2 stem from the inherent errors in bj-1 and cj-1, and the errors made in 
abbreviating the products bj1 iil and Cj-1~j-2 

(c) The bound (5.31) grows linearly with r, which is a necessary condition for it 
to be realistic. Moreover, if the coefficients ar, br and Cr in the original equation 
are constants and Pi/Po > al (now the largest root of the characteristic equation), 
then p = al and the right-hand side of (5.31) becomes exactly twice the limiting 
value of the combined maximum effects of the inherent and abbreviation errors. 

6. Numerical Examples. 
Example 6.1. We compute the Legendre functions Pr(x) and Qr(x) from the 

recurrence relation 

(r + l)Pr+l = (2r + 1)xpr - rpri, 

with the initial values 

1 1 +x x 1+ x 
(6.1) Po(x)=1, Pi(x)=x, Qo(x)= -n _ , Q1(x)= -In -1. 

2 1 2 1 -x 

We take x = 0.95, with the understanding that this value may be in error by as 
much as ?0.000001, and use six-decimal floating-point arithmetic, with chopping, 
for the calculation of Pr _ Pr (x) and qr Qr (x). The computed values Pr and qr 
are given for r = 0,1,. .. ,16 in the second and third columns of Table 6.1(i). 

Error bounds have been computed from the formulae given in Section 2. It 
transpires, for example, that Wr = 1, all r. Upper bounds Ier A and ir IA for the 
absolute errors IErI and IrrI in Pr and q-, respectively, appear in the fourth and 
fifth columns of Table 6.1(i). Some of the intermediate computations are shown 
in Table 6.1(ii). Here, and in subsequent examples, the superscript A ("above") 
is again used to signify upper bounds of the designated quantities, whereas in the 
final column the superscript B ("below") on Er indicates that entries in this column 
are lower bounds for Er. These calculations were carried out by the methods of 
[12] using four-decimal floating-point arithmetic with chopping, except that in the 
cases r = 0 and 1 the values of I Or IA were found from Formulae (6.1) with the aid 
of high-precision values of the logarithmic function. 
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TABLE 6.1(i) 

Legendre functions Pr (x) and Qr (X) 

r Pr qr 106 IrIA I 106 I7irIA I 106 Ir I 106 17ir I 

0 1 1.83178 0 11.09 0 11.0... 
1 0.950000 0.740192 1 11.80 1 11.7... 
2 0.853750 0.138880 83.19 84.93 2.8... 15.3... 
3 0.718436 - 0.273566 138.8 102.8 6.7... 14.9... 
4 0.554085 - 0.558962 291.3 178.2 12.7... 11.4... 
5 0.372736 - 0.736972 441.6 315.9 17.8 ... 8.1 ... 
6 0.187445 - 0.817756 500.4 437.7 20.6... 6.6... 
7 0.0112185 - 0.811052 451.9 422.6 21.4... 22.9... 
8 - 0.144030 - 0.729138 475.2 546.6 18.6... 52.7... 
9 - 0.268424 - 0.587454 489.5 748.1 12.4 ... 84.1... 

10 -0.354878 -0.404126 498.8 902.4 9.3... 109.8... 
11 - 0.399597 - 0.198888 467.3 913.2 9.7 ... 123.9... 
12 - 0.402295 0.00830666 359.4 784.8 12.4... 125.1... 
13 - 0.366103 0.198763 535.5 903.5 19.8 ... 112.6... 
14 - 0.297193 0.356448 716.4 970.4 25.9 ... 88.9 ... 
15 -0.204148 0.469164 834.4 994.6 29.9... 57.4... 
16 - 0.0971412 0.529380 839.7 924.6 31.5 ... 16.4 ... 

TABLE 6.1(ii) 

Legendre functions (continued) 

r 106I0rIA 106+ I A 106IArIA 106IBrIA 1060CrIA 106IDrIA EB 

0 0 11.09 0 0 10.63 8.289 - 

1 1 11.80 1.014 1.856 22.74 30.29 - 
2 103.3 69.77 100.5 79.39 90.26 83.06 0.9998 
3 150.6 46.09 232.2 101.6 131.4 90.70 0.9997 
4 174.2 89.07 362.3 151.2 198.0 116.6 0.9996 
5 169.3 189.2 462.4 249.2 307.0 225.4 0.9994 
6 135.1 294.4 519.9 353.5 422.6 448.5 0.9992 
7 74.25 378.2 541.2 419.9 500.5 768.5 0.9990 
8 40.38 426.1 549.1 458.9 512.4 1129 0.9990 
9 100.3 427.5 571.3 539.4 582.1 1460 0.9988 

10 189.9 377.7 631.0 660.1 693.1 1705 0.9986 
11 269.5 278.0 736.8 779.9 802.8 1842 0.9983 
12 326.3 140.9 879.3 856.8 871.1 1896 0.9982 
13 351.8 81.42 1034 871.9 916.4 1922 0.9981 
14 340.4 212.6 1174 952.9 1008 1991 0.9980 
15 291.0 383.5 1277 1070 1137 2157 0.9977 
16 206.6 524.8 1337 1183 1261 2436 0.9975 

Each of the quantities JAr IA, IBr IA, ICrIA and IDr IA appearing in Eqs. (2.4) 
grows monotonically with r, and very roughly in a linear fashion. The final error 
bounds Ier A and ir JA exhibit some of the oscillatory character of the solutions Pr 
and qr. The overall sizes of Ier A and I/r IA are linked directly to the sizes of the 
bounds lkr A and I V)r IA for the abbreviation errors O/)r and Olkr in Eqs. (2.2). 

Because of the uncertainty in the assumed value of x, the actual errors 6r and 
?7r in Pr and qr are unknown. However, their maximum absolute values can be 
found by taking x = 0.95 ? 0.000001 in turn, and recalculating Pr and qr using 
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higher precision. The results are shown in the last two columns of Table 6.1(i). 
Of course, the bounds lerjA and j1rjA overestimate the actual values of 1r I and 

l~rl considerably. This is caused partly by the stochastic nature of the actual 
abbreviation errors, and partly by the "radix effect". Had the computations been 
carried out in base 2, for example, instead of base 10, then the overestimation of 
the actual errors would be reduced by a factor of about 2 or 3 [12], [17]. 

Example 6.2. Let us solve the system (1.2) of Example 1.1 by the first method 
of Section 4, that is, by using the recurrence relation satisfied by the ratios hr =- 

Pr/Pr-i. However, instead of assuming that the coefficients ar, br and Cr in Eq. 
(4.1) are exactly 12, 25 and 13, respectively, we suppose that they are given in 
interval form ar = a, br = b, Cr = c, all r, where 

a = [11.9999,12.0001], b = [24.9998,25.0002], c = [12.9999,13.0001]. 

The initial values po = 1, Pi = 13/12, are unchanged. (Of course, the method used 
in Example 1.1 would be just as unsuccessful with this modification.) 

The recurrence formulae are given by 

(6.2) ahr = b-(c/hri), Pr = hrPr-i, r > 2. 

Interval values of Pr and hr, computed with six-figure decimal arithmetic, are given 
in Table 6.2. These results obviously represent a considerable improvement on those 
found on Table 1.1. However, they are not entirely satisfactory for the following 
reason. The interval width Ihr of hr grows roughly in proportion to r: this can be 
seen from the entries in the penultimate column of Table 6.2. This linear growth in 
I hr leads to an almost quadratic rate of growth in the corresponding relative errors 
of the Pr. This phenomenon is illustrated by the values of Tpr/(r2Pr) supplied in 
the last column of Table 6.2; here pr denotes the midpoint of the interval value of 
Pr. 

TABLE 6.2 

Interval solution of Eqs. (6.2) 
r 

g hr - __I Pr -j Ihr Tpr/(r2Pr) 

0 - - 1 1 - - 

1 1.08333 1.08334 1.08333 1.08334 0.00001 0.000009... 
2 1.08329 1.08338 1.17356 1.17367 0.00009 0.000023... 
3 1.08325 1.08342 1.27125 1.27158 0.00017 0.000028... 
4 1.08321 1.08346 1.37703 1.37771 0.00025 0.000030... 
5 1.08318 1.08349 1.49157 1.49274 0.00031 0.000031... 
6 1.08315 1.08352 1.61559 1.61742 0.00037 0.000031... 
7 1.08312 1.08355 1.74987 1.75256 0.00043 0.000031... 
8 1.08309 1.08357 1.89526 1.89903 0.00048 0.000031 ... 
9 1.08307 1.08360 2.05269 2.05779 0.00053 0.000030... 

10 1.08304 1.08362 2.22314 2.22987 0.00058 0.000030... 
11 1.08302 1.08364 2.40770 2.41638 0.00062 0.000029... 
12 1.08300 1.08366 2.60753 2.61854 0.00066 0.000029... 
13 1.08299 1.08368 2.82392 2.83766 0.00069 0.000028... 
14 1.08298 1.08370 3.05824 3.07518 0.00072 0.000028... 
15 1.08296 1.08371 3.31195 3.33261 0.00075 0.000027... 
16 1.08294 1.08372 3.58664 3.61162 0.00078 0.000027... 

Example 6.3. We solve the problem posed in Example 6.2 by the second method 
of Section 4. On omitting the suffix r from the coefficients ar, br, Cr, Ar, our and 
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v.4, we obtain the recurrence relations 

(6.3) aur = VPr + Iurr-1, Pr+1 = Ur + APr r > 1, 

in which 
A = b/(2a), p,= c/A, I = b-aA -tz 

The initial member of the sequence {Ur } is given by uo = P1 - Apo. Interval values 
of A, p and Iv are found to be 

A = [1.04164,1.04169], ,u = [12.4797,12.4803], v = [0.0196000,0.0204000], 

and using six-figure decimal arithmetic we arrive at the interval values of Pr and 
Ur displayed in Table 6.3. 

For large r, the intervals containing Pr are narrower than those obtained in Table 
6.2 but from the last column, in which hr again denotes the mean value of Pr, it is 
evident that the growth of the relative error is still not linear in r. 

TABLE 6.3 

Interval solution of Eqs. (6.3) 
r Ur P Pr - lpr/(rPr) 

0 0.0416400 0.0417000 1 1 - 

1 0.0450735 0.0452113 1.08333 1.08334 0.00000... 
2 0.0487915 0.0490168 1.17350 1.17373 0.00009... 
3 0.0528176 0.0531412 1.27115 1.27169 0.00014... 
4 0.0571773 0.0576112 1.37689 1.37786 0.00017... 
5 0.0618983 0.0624557 1.49139 1.49293 0.00020... 
6 0.0670105 0.0677061 1.61538 1.61764 0.00023... 
7 0.0725463 0.0733965 1.74965 1.75279 0.00025... 
8 0.0785408 0.0795638 1.89504 1.89927 0.00027... 
9 0.0850317 0.0862483 2.05248 2.05803 0.00030... 

10 0.0920608 0.0934933 2.22297 2.23008 0.00031... 
11 0.0996716 0.101346 2.40759 2.41656 0.00033... 
12 0.107913 0.109856 2.60751 2.61866 0.00035... 
13 0.116838 0.119079 2.82399 2.83770 0.00037... 
14 0.126502 0.129076 3.05841 3.07509 0.00038... 
15 0.136967 0.139910 3.31226 3.33238 0.00040... 
16 - - 3.58714 3.61122 0.00041... 

Example 6.4. We compute the absolute value of the Bessel function Yr(x) by 
forward recurrence from the relation 

(6.4) Pr+ 1 = (2r/X)Pr - Pr-i1 

We take x = 100 and the initial values 

(6.5) Pioo = -Y1oo(100) = 0.166921 ... , P1o1 = -Y101(100) = 0.200285.... 

Using six-decimal floating-point arithmetic, with chopping, we obtain the values Pr 
given in the second column of Table 6.4. 

We shall compute both a posteriori and a priori error bounds by the methods 
of Section 5. These computations are carried out in four-decimal floating-point 
arithmetic with chopping. In the terminology of [12] this is the lower mode of 
computation (L), and its associated wrp is _ye = 10-3. For the computation of the 
Pr, the wrp is y - 10= . 
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Both types of error bound require the evaluation of the bounds (5.19) for the 
coefficients tj. The zeros of the local characteristic polynomial z2 - (2r/x)z + 1 are 
given by 

COr = (r/x) + {(r/x)2 _ 1}1/2, Or = (r/x) - {(r/x)2 _ 1}1/2. 

Consequently, for any n exceeding 100, we have 

Oe = celol = 1.15177..., B = /101 = 0.868225...; 

compare (5.13). Also, from (5.17) and (6.5) we see that p = a. From (5.19) we 
derive 

(6.6) t100 < 3.061 ...; tj < 4.061..., j > 101. 

For simplicity, however, we use the same bound for all j: 

(6.7) tj <4.062, j > 100. 

For a posteriori error bounds we need to compute bounds for the quantities O/$r 
defined by 

Pr = {(2r-2)/x} r-1 -Pr-2 +ori r > 102; 
compare (5.2). Since the coefficient (2r - 2)/x is exact, only two chopping errors 
are introduced at each recurrence step. Applying the methods of [12] we find that 

kkrl < Xre3e r > 102, 

where 

Xr = Pr + {(2r - 2)/X}Pr-1, 
and the double bar signifies the value computed in 1. The rest of the computation 
proceeds in accordance with the relations (5.21), (5.22) and (5.23), as described in 
Section 5. The main steps are shown in columns 3, 4, 5 and 6 of Table 6.4: As in 
Example 6.1, the superscripts A and B signify upper and lower bounds respectively. 
Again, these bounds were computed using the methods of [12]. 

TABLE 6.4 

Bessel function - Yr(x) 

r Pr Xr 105TA pr 105IrIA Ir/PrA r /Pr Wr 

100 0.166921 - - 

101 0.200285 - 4.531 - - - - - 

102 0.237654 0.6421 15.70 0.2375 3.755 0.00016 0.000004... 0.00037 
103 0.284529 0.7693 26.94 0.2844 7.710 0.00028 0.000007... 0.00060 
104 0.348475 0.9345 38.14 0.3482 13.35 0.00039 0.000011... 0.00082 
105 0.440299 1.165 49.20 0.4399 21.78 0.00050 0.000013... 0.00104 
106 0.576152 1.500 60.13 0.5757 34.86 0.00061 0.000016... 0.00127 
107 0.781141 2.002 70.94 0.7805 55.76 0.00072 0.000021... 0.00149 
108 1.09548 2.766 81.61 1.094 89.94 0.00083 0.000032... 0.00172 
109 1.58508 3.951 92.21 1.583 147.0 0.00093 0.000048... 0.00194 
110 2.35999 5.814 102.7 2.356 243.8 0.00104 0.000057... 0.00216 
111 3.60689 8.797 113.1 3.601 410.8 0.00114 0.000063... 0.00239 
112 5.64730 13.65 123.5 5.639 702.6 0.00125 0.000067... 0.00261 
113 9.04301 21.68 133.9 9.030 1218 0.00135 0.000074... 0.00284 
114 14.7899 35.21 144.3 14.75 2147 0.00146 0.000077... 0.00306 
115 24.6778 58.39 154.6 24.63 3840 0.00156 0.000084... 0.00328 
116 41.9690 98.71 164.8 41.89 6966 0.06166 0.000088... 0.00351 
117 72.6902 170.0 175.1 72.56 12810 0.00177 0.000090... 0.00373 
118 128.126 298.1 - - 23920 0.00187 0.000092... 0.00396 
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By way of comparison, the seventh column of Table 6.4 gives an upper bound 

Ie,/Il- A for the relative error. This is derived from the entries in the second and 
sixth columns. The next column gives the value of the actual relative error Er/Pr 
computed by use of high-precision values of Yr(100). Our bound overestimates the 
true error by a factor that ranges from about 35 at the beginning of the recurrences 
down to about 20 at r = 118. Two sources contribute to this factor. First, there is 
the radix effect associated with base 10. As we observed in Example 6.1, use of base 
2 instead might save a factor of about 2 or 3. Secondly, we have used a uniform 
bound, given by (6.7), for the tj. In fact, most of these coefficients are considerably 
less than 4.062. If desired, smaller bounds could be used without changing the 
0(r) estimate of the total computing effort. For example, since the sequence f3r is 
decreasing, it is easy to see that the second of the bounds (5.19) can be replaced 
by 

tj < al/(a - 0j), 101 < j < n. 

The quantity a/(a - fj) has the values 2.258. .. and 1.925 ... at j = 110 and 118, 
respectively. Further sharpening is possible by application of the theorems given in 
[6, Section 5]. 

The final column of Table 6.4 gives a priori bounds rA for the relative precision 
of the approximation Pr to Pr. These were found as follows. Since the coefficients 
in (6.4) are exact, we have 6 = 0. Also, since cj-1 = aj-1, all j, and only two 
chopping errors are made at each recurrence step, Eq. (5.24) may be replaced by 

=2 {(tioo+tio) + a~ +E j (2+Pj2 j l 102. 

On taking o _ - 10-5, substituting for the tj by means of (6.6) and using the 
fact that PJ-2/P3 < 1/p2, all j, we arrive at the numerical form 

zur < {14.25 + (22.40)(r - 101)} x 10-5, r > 102. 

As expected, the values of wA are approximately twice the size of the a posteriori 
relative error bounds | Cr/Pr |A 

7. Conclusions. We have described various methods for computing error bounds 
for solutions of difference equations of the form 

arPr+1 = brPr + CrPr-1 

that are generated by forward recurrence. Two cases are considered: (A) oscillatory 
systems, in which b2 +4arcr < 0, all r; (B) monotonic systems, in which b2 + 4arCr > 

0, all r. In Case B methods have been provided for finding bounds of both a 
posteriori and a priori types. In Case A, only an a posteriori method is available, 
and there is a need for a method for constructing a priori bounds analogous to that 
of Section 5. 
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